Exercice 1

1. On donne une liste d'expressions de fonctions f dérivables sur $\mathbb R$ et on demande pour chacune l'expression de sa fonction dérivée f'. Compléter le tableau :

Expression de $f(x)$	Expression de $f'(x)$
f(x) = 502	$f'(x) = \dots$
f(x) = 27x	$f'(x) = \dots$
f(x) = 8 - 9x	$f'(x) = \dots$
$f(x) = x^{14}$	$f'(x) = \dots$
$f(x) = x^2$	$f'(x) = \dots$

		_
2.	Soit h la fonction définie et dérivable sur \mathbb{R} telle	e que pour tout réel x, $h(x) = x^5$.

Déterminer une équation de la tangente à la courbe de h au point d'abscisse -1. Détailler les calculs.

.....

.....

Exercice 2

On donne une liste d'expressions de fonctions f dérivables sur \mathbb{R} et on demande pour chacune l'expression de sa fonction dérivée f'. Compléter le tableau :

Expression de $f(x)$	Expression de $f'(x)$
$f(x) = x^3 - 4x + 7$	$f'(x) = \dots$
$f(x) = -3x^2 + 5x$	$f'(x) = \dots$

Expression de $f(x)$	Expression de $f'(x)$
$f(x) = 2x^3 + x^2 - x + 4$	$f'(x) = \dots$
$f(x) = -x^3 + 9$	$f'(x) = \dots$
$f(x) = 7x^2$	$f'(x) = \dots$
$f(x) = 5x^3 - 12x$	$f'(x) = \dots$

Exercice 3

1. On donne le tableau de variations d'une fonction h dérivable sur [-6; 20]. Compléter le tableau de signes de sa fonction dérivée h'.

x	-6	0		8		20
h'(x)	•••	0	•••	0	•••	
h(x)	-3	1		-4		_ 2

2. On considère une fonction k dérivable sur \mathbb{R} dont on donne le tableau de signes de sa dérivée k'. Compléter le tableau de variations de k et les décrire.

x	$-\infty$		-3		7		+∞
k'(x)		_	0	+	0	_	
<i>k</i> (<i>x</i>)							

Exercice 4

Soit la fonction h polynôme du second degré définie sur \mathbb{R} par $h(x) = -2x^2 + 3x - 1$. On note h' la fonction dérivée de h.

1. Soit x un réel, déterminer une expression de h'(x).

.....

2. Étudier le signe de h' sur \mathbb{R} puis en déduire les variations de h sur \mathbb{R} .

x	$-\infty$						$+\infty$
h'(x)		•••	•••	•••	•••	•••	•••
h(x)							

Exercice 5

Soit la fonction g polynôme du troisième degré définie sur \mathbb{R} par $g(x) = -2x^3 - 3x^2 + 36x$. On note g' la fonction dérivée de g.

- 1. Soit x un réel, déterminer une expression développée de g'(x).
- **2.** Montrer que pour tout réel x, g'(x) se factorise en g'(x) = (12 6x)(3 + x).
- **3.** Compléter le tableau d'études du signe de g'(x).

x	$-\infty$	-3		2		+∞
12-6x		 •••			•••	
3+x		 •••	•••		•••	
g'(x) = $(12 - 6x)(3 + x)$		 •••		•••	•••	

4. En déduire les variations de g sur \mathbb{R} .

x	$-\infty$		-3		2		+∞
g'(x)		•••	•••	•••	•••	•••	•••
g(x)							